Lessons Learned

September 10, 2013

Although I only started this blog last week, I’ve been active in online and social media for a couple of years. Today I’d like to repost a piece of mine that was originally published in the February 2013 edition of EP Lab Digest .

EP Lab Digest is one of those large format specialty magazines that get sent free to doctors’ mailboxes and hospital labs. Although many call these “throw-away journals,” EP Lab Digest is one that I read and keep.

Look for a Part II of this post in EP Lab Digest next month.

Lessons Learned in 18 Years of Device Implant and Follow Up

Over the years that we practice medicine, all doctors build up a mental list of tips or “pearls.” These are pointers, typically see in journal articles or books, that color the way we practice. Many of these tips were passed down during our training. Some we learn from our colleagues. Still others are original creations. As a private practice (and now hospital employed) electrophysiologist, I infrequently have the opportunity to share my tips with other physicians. When EP Lab Digest offered me the opportunity to write an article for this issue, I thought I’d brainstorm a list of these “lessons learned” with a focus on my passion of cardiac device implantation and follow up.

I hope you find these tips informative and at times provocative. Forgive me if some of this is too obvious. I welcome any input from the readers. Please feel free to comment or contact me at my twitter ID @EJSMD. I look forward to hearing your feedback.

  • Your unswerving mission as a doctor should be to make sure every patient you touch gets high quality care. This may have little to do with the metrics with which others judge you.
  • When a patient gets to 90 years of age, they get to make all the rules. A doctor’s job at this point is to do as little as possible.
  • Newer isn’t always better. Adopt new pacer and ICD technology gradually. It usually takes years in the marketplace before we know if a product is good or bad.
  • Pulling the left ventricular lead sheath is similar to taking a golf swing. It demands your full attention, and everyone in the room should hold still and stay quiet until it’s done.
  • Don’t ever forget how unnatural it seems to our patients to have a big hunk of metal implanted into their body.
  • Treat your reps with respect, but expect excellence. They are an important part of your care team.
  • If you haven’t discussed the option of ICD downgrade or abandonment with your elderly patients prior to generator replacement, shame on you.
  • When upgrading a pacer to an ICD, don’t be afraid to reuse or preserve the original RV pacing lead. It’s probably a better lead than the one you just put in.
  • Choose which vendor you work with in a principled manner. Consider product, price, support and value added service in each device implant decision.
  • It is (almost) never appropriate to get upset at a nurse.
  • Strive for a shallow angle of entry when obtaining venous access (this creates less flexion stress on the lead).
  • A left ventricular lead on the septum or in the apex with a good threshold is usually worse than no lead at all.
  • There aren’t too many CRT super-responders with RBBB.
  • Seeing sternal wires during a device implant is a good thing.
  • DF-4 ICD technology takes about 15 seconds off an ICD implant and adds a whole new set of potential problems.
  • Work hard to keep your hospital out of restrictive contracts, and don’t use any device model or make 100% of the time.
  • It is possible to have too much lead slack (Think St. Jude Riata)
  • Make your device pocket just above the facial layer, not within the subcutaneous fat.
  • Pay attention to the quality, timing and consistency of your pacer/ICD lead electrograms throughout the implant. We find it very helpful to display these continuously on our EP recording system right below the surface ECG.
  • It’s OK to work fast. Just know when it’s time to slow down.
  • Empiric VT zones in primary prevention ICDs are almost always a bad idea (thank you MADIT-RIT for proving this) [Note: PainFree SST trial, which I presented at HRS and EUROPACE 2013, showed safety of empiric VT Zones]
  • An ICD shock hurts, but it’s not as bad as being kicked by a horse (according to one of my veterinarian patients)
  • Don’t hold hard onto dogma without proof. Recall the DAVID trial was designed to show the benefits of dual chamber pacing in ICD patients.
  • If you implant a pacer in 20 year old, remember that someone may have to care for those leads for 50 years.
  • Pay attention to the timing of the electrogram on your LV lead. Long Q-LV times (i.e. activation late in QRS complex) correlate with favorable outcomes.
  • Work hard to save your hospital money without compromising your patients’ care.
  • If you can get the left ventricular lead implanted in the time it takes to play “Rapper’s Delight,” it’s going to be a good day.
  • Never become dependent on one of your vendors.
  • Fewer leads on a device means fewer things can go wrong.
  • Make sure to keep your long-term patient’s device programming up to date with contemporary standards.
  • When it comes time for pulse generator replacement, make sure you’ve seen your patient often enough that they will still recognize you.
  • When the scrub tech/nurse switches off during your case, this may be a sign you’re taking too long.
  • If someone could grant me only one wish about CRT, it would be to eliminate the problem of diaphragmatic stimulation.
  • The most important attribute in an ICD or pacer lead is a long established track record of reliability.
  • When checking the LV threshold on a biventricular pacemaker, make sure not to be fooled by right ventricular capture from anodal stimulation.
  • A lot of time can be wasted looking for the perfect P wave.
  • I’ve never had a patient complain to me that their ICD lead is too thick.
  • If there’s one piece of tech I hope I never have to do without, it’s our Site-Rite ultrasound for axillary vein access.
  • Despite all of its legitimate flaws, it’s a really good thing we have amiodarone available for our patients.
  • Work hard – really hard – to make your patient’s like you. It will pay off later. Much of what we do about relationship building. That’s one way to keep you from being replaced by an iPhone app.
  • Always say please and thank you to your scrub tech or nurse. “Scalpel, please” is much more polite than what we see on TV.
  • The best way to predict the future is to look carefully at the past. Never neglect to perform a good chart review.
  • It’s appropriate to be friendly with device representatives. They should not, however, be your friends.
  • For single chamber pacer pulse generators, it’s rarely cost effective to use the top tier model.
  • Never walk into a patient’s room until you know their story well enough that you can interview them face-to-face. Keep you nose out of the chart as much as possible.
  • No patient needs a primary prevention ICD, any more than they need to wear a seatbelt. We are our patient’s doctors, not their parents. Counsel with honesty and respect.

EJS

Advertisements

Left to My Own Devices

September 6, 2013

Welcome to my blog.  Let me introduce myself.

I am Edward J. Schloss MD, but I’ve been called Jay all my life.  Online, I’m @EJSMD, and I work as a clinical cardiac electrophysiologist at The Christ Hospital in Cincinnati, Ohio.  Although my primary professional focus is direct patient care, I also do a lot of clinical research with The Lindner Research Center here at the hospital.  I take care of a variety of patients with electrical disorders of the heart, but in recent years I’ve focused most of my practice on the care of patients with pacemakers and ICDs (implantable cardioverter defibrillators).  I implant and extract devices as well as provide the follow up care of these patients.  We don’t have fellows or residents in our lab, so I am the operator for all of my procedure.  I am fortunate to be surrounded by a remarkable team of physicians, nurse practitioners, nurses, technicians, medical assistants, industry personnel and administrators that keep everything running smoothly.  I am madly in love with my best friend Kendahl, and we’ve been married for over 24 years.  We have three amazing children ages 15, 20 and 21.  I have a bio up on our practice website.

Although this blog is just starting (see my prior two posts), I’ve been actively writing about cardiology and healthcare in online and social arenas for a few years.  I’ve considered starting a blog for a while and jump in now with some degree of trepidation.  Left to My Own Devices will serve as a platform for me to communicate issues primarily affecting my professional world.  As the name implies, expect to hear a lot about pacemakers and ICDs and other issues in cardiology.  I do hope, however, to extend my reach into broader arenas of healthcare in which I have passion, such as healthcare policy and electronic medical records.  I’ve already written a lot on twitter about these issues and done a bunch of long form journalistic pieces on Cardiobrief.org or Forbes.com.  For the blog, I’m hoping to find the sweet spot between 140 characters and 1000 words.

I’d like to recognize a few important people who’ve helped me along the way:

–       J. Rod Gimbel MD single handedly started the Cleveland Clinic Heart Center website from the fellows room back in 1994, just before I started training there with him.  Naturally, all but a few thought he was crazy.  Rod showed everyone that the web is a viable platform to “narrowcast” cardiology content to a specialized audience.  He is still breaking down barriers with his research on MRI of pacemakers and I am proud to be one of his coauthors.

–       Wes Fisher MD is a practicing EP in Evanston, IL and truly is the blogfather of cardiology.  He’s still cranking out regular amazing content at DrWes and on twitter.  Wes hosted my first ever blog comment back in 2008 and has continued to mentor and promote me unfailingly since that time.  He is a bold, entertaining writer who knows just how to skate the line between smartass and wise guide.  He’s the guy shining lights into the blind alleys of health care policy.

–       Larry Husten at Cardiobrief, Forbes.com,  Cardioexchange, and twitter is an first-rate real medical journalist who gave me my first break by posting my summary of the St. Jude Riata Lead Summit back in January 2012.  With that offer, I suddenly felt like a legitimate writer.  With his broad platform and wise editorial guidance, I’ve been able to dramatically expand my reach.  He sets a high bar for excellence, and when I send him content, it still kind of feels like Senior English class back in high school.

–       John Mandrola MD is an electrophysiologist in Louisville, KY who blogs at Dr. John M.  John and I started out as “twitter buddies” and now we’re good friends in real life too.  His humanity permeates all he writes, and if you were sick, this is the kind of guy you’d want as your doctor.  It’s flattering to be supported and promoted by such as great guy and insightful writer.

I finally started the blog this week because I really needed to find a home for the the two posts I just published.  For years I’ve had other ideas bubbling up,  and this forum will allow me to decompress.  Since I don’t really have a roadmap built, it still remains to see exactly where Left to My Own Devices takes me.  I can assure you, though, that what you read will be honest and filled with passion.

EJS

September 6, 2013

Echo CRT Trial – Going Narrow Doesn’t Broaden CRT Population

September 3. 2013

A once promising indication for cardiac resynchronization therapy (CRT) in selected heart failure patients with narrow QRS intervals has suffered a major blow with the premature termination of the Biotronik sponsored multicenter EchoCRT trial reported today at the European Society of Cardiology in Amsterdam.

Cardiac resynchronization therapy was developed in the late 1990s as a treatment in patients with systolic heart failure.  A series of seminal trials including MUSTIC, MIRACLE and COMPANION firmly established biventricular pacing as an effective treatment for advanced systolic congestive heart failure by the early 2000s.  The patients in all of these early trials had LVEF <= 35% and wide electrocardiographic QRS complexes (>120msec or more) as a marker intraventricular dyssynchrony that could be improved with CRT.

Later trials including MADIT CRT and REVERSE showed benefit of CRT in patients with milder symptomatic classes of heart failure, but the study populations still required wide QRS complexes and severe LV dysfunction.

Analysis of these and other studies has suggested that the treatment benefit of CRT may be confined to the left bundle branch block population and the most recent US society guidelines for CRT now reflect this, assigning less weight to the non-LBBB wide QRS population.

For years, investigators have suggested that there may be an unmet need for CRT in patients with systolic heart failure who do not have wide QRS complexes, but appear to have treatable dyssynchrony by echo.  Small studies, commonly single center, have shown CRT benefit in this population when pre-procedure screening echocardiography has shown evidence of dyssynchrony.  A larger randomized study RETHINQ, reported in 2007, however, failed to show any benefit in a heart failure population with echocardiographic dyssynchrony and narrow QRS.  Some criticized the study for its design, with particular attention to the type of echo parameters used to define dyssynchrony.  This past February, however, another randomized trial of CRT in patients with narrow QRS, LESSER-EARTH was terminated prematurely without benefit.  This trial, however, did not have any echocardiographic enrollment requirements and was also limited by very slow enrollment (85 patients over 8 years).

One isolated recent bit of supporting evidence for narrow QRS CRT came from the NARROW-CRT trial that was reported this past April. This trial showed benefit of CRT in a small, randomized sample of heart failure patients with narrow QRS and echo criteria for dyssnchrony.  They were randomized to CRT-D vs. D-ICD with minimal pacing.  The biventricular paced group had a significantly higher proportion of patients that improved their heart failure clinical composite score. (41% vs. 16%) and exhibited a trend toward improvement in survival and heart failure hospitalization.

The best, and possibly last remaining hope for the CRT in the narrow QRS population has rested on the EchoCRT trial, which was reported today at the European Society of Cardiology meeting in Amsterdam and simultaneously published in New England Journal of Medicine.  Biotronik sponsored this investigator-initiated randomized, multicenter trial, which began enrollment in August 2008 with projected enrollment of 2330 patients.  Study patients had Class III or IV heart failure with LVEF <= 35%, diastolic LV dimension greater than 5.5cm and QRS duration < 130 msec.  Prior to enrollment, all patients had echocardiography with modern, advanced dyssynchrony measurements including tissue doppler and speckle tracking imaging.   A single core lab at the University of Pittsburgh reviewed all echoes, and patients were enrolled in the trial only if they met predetermined indices for dyssynchrony.  Once determined eligible, all patients underwent placement of a biventricular ICD with blinded randomization to active CRT=ON versus CRT=OFF.  The primary endpoint was a composite of time to first hospitalization for heart failure or all-cause mortality over a minimum of one year.  Duration of the trial was event driven and had been expected to have been completed in December 2012.

On March 13, 2013, the EchoCRT data safety and monitoring committee notified the trial sites that the trial would be terminated prematurely due to futility.  There had not been a public disclosure of this news until April of this year when this was discussed in an  ACC summary of the NARROW-CRT trial publication  and later reported by Cardiobrief.  No details of the trial results were available until this week’s report.

The Echo CRT trial enrolled 809 patients over mean 19.4 months.  The composite outcome of death or heart failure admission was reached in 28.7% patients getting CRT vs. 25.2% of the blinded controls.  There were 45 deaths in the CRT group and 26 in the control group.  Although neither of these values reached statistical significance, it is worth noting that the trial was terminated for futility before comparative power could be reached, and the death data appears to show ongoing curve divergence upon termination of the trial.  When analyzed specifically for cardiovascular death, the CRT group did have statistically significant excess death (37 vs. 17, P=0.004).  None of the nine pre-specified subgroups showed benefit from CRT, and more procedural harm was demonstrated in the CRT group.

After this extremely discouraging, but well run trial, it seems unlikely that there will be a future for CRT in the narrow QRS heart failure population.  Given the current strict regulatory environment, off label implants are likely to be heavily scrutinized and discouraged.  It also seems unlikely that another large-scale trial in this population will be carried out.

 

Although the results of EchoCRT likely eliminates the promise of CRT as a primary treatment for narrow QRS systolic heart failure, the overall field of biventricular pacing continues to advance.  The positive findings of the BLOCK HF trial published earlier this year may lead to an indication for CRT as a preferred pacing therapy in patients with heart block and LV dysfunction.  BIOPACE has a similar design as BLOCK HF and is reported to be in follow up.  In addition, the recently initiated MIRACLE EF trial will look at CRT as a primary treatment in heart failure patients with LBBB and mild LV dysfunction.  The ongoing PROMPT trial is evaluating LV or biventricular pacing as a treatment to prevent adverse myocardial remodeling early after myocardial infarction.